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Introduction 19 

This auxiliary material contains: 1) A description of NOAA National Centers for Environmental 20 

Prediction (NCEP) atmosphere/land general circulation model, 2) A description of 20th Century 21 

Reanalysis data assimilation system, 3) A description of the data processing of the gridded fields. 22 

4) A description of the Auxiliary figures, 5) Auxiliary figures and captions for Figs. S1 to S3, 6) 23 

Auxiliary tables and footnotes for Table S1, S2, and S3, and 6) References for the auxiliary 24 

material. 25 

 26 

1. Description of National Centers for Environmental Prediction (NCEP) atmosphere/land 27 

general circulation model 28 

  29 

The short-term forecast ensemble is generated in parallel from 56 9-hour integrations of a state-30 

of-the-art atmospheric and land general circulation model, a 2008 updated version of the 31 
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atmospheric and land component of NOAA’s National Centers for Environmental Prediction 32 

(NCEP) operational Climate Forecast System model [Saha et al., 2006] called the Global 33 

Forecast System (GFS). The AMIP20C ensemble is generated from 56 138-year integrations of 34 

the GFS.  Briefly, the atmospheric model component of the GFS used here has a spatial 35 

resolution of nearly 200-km on an irregular Gaussian grid in the horizontal (corresponding to a 36 

spherical harmonic representation of model fields truncated at total wavenumber 62, T62). In the 37 

vertical, we use finite differencing of 28 hybrid sigma-pressure levels [Juang, 2005]. The model 38 

state includes a comprehensive suite of atmospheric fields (e.g., surface pressure, horizontal 39 

winds and vertical motion, temperature, and humidity). The model has a complete suite of 40 

physical parameterizations representing the exchange of heat, momentum, and moisture 41 

[Kanamitsu et al., 1991] with most updates detailed in Moorthi et al. [2001]. Additional updates 42 

to these parameterizations are described in Saha et al. [2006] and Compo et al. [2011] and 43 

include revised solar radiation transfer, boundary layer vertical diffusion, cumulus convection, 44 

and gravity wave drag parameterizations. In addition, cloud liquid water is a prognostic quantity 45 

with a simple cloud microphysics parameterization. The radiation interacts with a fractional 46 

cloud cover that is diagnostically determined by the predicted cloud liquid water. A prognostic 47 

ozone parameterization is also included in the GFS based on parts of the US Naval Research 48 

Laboratory’s CHEM2D Ozone Photochemistry Parameterization (CHEM2D-OPP) [McCormack 49 

et al., 2006]. It includes terms representing gas phase net production and loss and a dependency 50 

on the ozone mixing ratio itself. The 2008 version of the GFS model used also includes the 51 

radiative effects of historical time-varying CO2 concentrations, volcanic aerosol and solar 52 

variations. Monthly estimates of CO2 concentration on a 15° latitude by longitude grid are used 53 

from 1956 to 2010 and half-yearly globally-averaged estimates are used prior. Annual estimates 54 
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of solar variations are used from 1944 to 2010, and a repeating 11 year solar cycle is used prior. 55 

Monthly estimates of volcanic aerosols are used. The model contains a complex representation of 56 

land processes through coupling with the 4-layer Noah land model [Ek et al., 2003].  The 57 

specified boundary conditions needed to run the model in atmosphere/land mode are taken from 58 

the time-evolving sea surface temperature and sea ice fields of the HadISST1.1 dataset obtained 59 

courtesy of the Met Office Hadley Centre [Rayner et al., 2003]. The success of the AMIP20C 60 

(Table S2, Fig. S2, S3) and of other SST-forced simulations [e.g., Compo and Sardeshmukh, 61 

2009; Hoerling et al., 2008] indicates that the adjustment procedures for the SST observations 62 

are appropriate, at least in so far as they relate to determining TL2m from the simulations. Note 63 

that these adjustments tend to make the SSTs in the first half of the 20th century warmer than the 64 

original, uncorrected observations [Rayner et al., 2003]. It is easy to hypothesize that if we had 65 

used unadjusted SSTs, even more warming of the land temperatures would have been found in 66 

AMIP20C, and potentially in 20CR, over the period 1901 to 2010.  67 

2. Description of 20th Century Reanalysis Data assimilation System 68 

 69 

The 20th Century Reanalysis (20CR) is a physically-based state-of-the-art data assimilation 70 

system that generates a six-hourly estimate of the 3 dimensional state of the atmosphere and the 71 

uncertainty in that state using only CO2, solar and volcanic radiative forcing agents [Compo et 72 

al., 2011]; monthly-averaged sea surface temperature (SST) and sea ice concentration fields 73 

(both from the HadISST1.1 of Rayner et al. [2003]); and hourly and synoptic barometric pressure 74 

observations (from the International Surface Pressure Databank [Compo et al., 2011]). The 20CR 75 

is based on an Ensemble Kalman Filter technique [Whitaker and Hamill, 2002]. The atmospheric 76 

state is estimated (“analyzed”) every six hours from a weighted combination of available 77 

pressure observations and an ensemble of 56 nine-hour forecasts made from the previous 78 
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estimated state using a NOAA atmosphere/land general circulation model (AGCM, see auxiliary 79 

material Section 1) developed at NCEP. This weighting, the Kalman gain, is determined from the 80 

covariance matrix of the forecast ensemble [Whitaker and Hamill, 2002]. The Kalman gain 81 

varies from analysis to analysis depending on the physical features of the flow, such that when 82 

the ensemble spread of the forecasts is large in regions of rapidly growing uncertainty, e.g., 83 

during a developing low-pressure weather system, more weight is given to the observations and 84 

less to the forecasts. It also varies such that more weight is given to each observation when the 85 

observations are sparse. Sampling and model errors prevent the ensemble-estimated Kalman gain 86 

from being optimal and can lead to filter divergence [e.g., Anderson and Anderson, 1999; 87 

Whitaker and Hamill, 2002]. Two methods are used to account for this: covariance inflation 88 

[Anderson and Anderson, 1999] and distance-dependent covariance localization [Houtekamer 89 

and Mitchell, 2001; Hamill et al., 2001].  Covariance inflation attempts to correct for sampling 90 

error and serves as a parameterization of model error, assuming that the model error covariance 91 

is in the space of the 56 ensemble states. In the 20CR, covariance localization coefficients are set 92 

to 4 scale heights in the vertical (about 18 hPa) and 4000 km in the horizontal. They are constant 93 

throughout the reanalysis period [Compo et al. 2011]. The coefficients for covariance inflation 94 

change at stated times throughout the interval. Less inflation is needed during times and in 95 

regions where the observations are sparse, while more is needed as the pressure observations 96 

become denser in the 2nd half of the 20th century. Inflation coefficients have a maximum 12% in 97 

the Northern Hemisphere starting in 1921 and 7% in the Tropics and Southern Hemisphere 98 

starting in 1952. The coefficients remain constant starting in 1952 [See Table I, Compo et al. 99 

2011]. The year 1952 thus forms an ideal starting point for computing trends from 20CR and is 100 
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therefore used as the initial year for some of the calculations in Fig. 2, 3, Table S2, Table S3, and 101 

Fig. S3.  102 

 103 

Each state estimate in 20CR includes fields of surface pressure and 3 dimensional winds, 104 

temperature, humidity, cloud liquid water, and ozone at 28 vertical levels throughout the 105 

troposphere and stratosphere around the globe on an approximately 2 degree latitude by 2 degree 106 

longitude grid [Compo et al., 2011]. In addition to the variables included in the state estimate, the 107 

forecast also includes variables on the global grid such as fluxes of heat, momentum, radiation 108 

and moisture [Compo et al., 2011]. 109 

 110 

3. Data Processing 111 

To facilitate the intercomparison of 20CR with the available TL2m observational data sets, we 112 

have spatially interpolated each monthly field of the datasets 20CR, CRU_TS3.10, 113 

GISTEMP250 and GISTEMP1200, JMATEMP, and UDELv3.01 to a 1.5 degree latitude by 1.5 114 

degree longitude grid using natural neighbor interpolation to determine the land-average for 115 

90°N-60°S (Fig. 1, Table S2) and 60°N-60°S (Fig. S1, Table S3). MLOSTv3.5.2 was 116 

interpolated only for the 90°N-60°S comparison in Fig. 1 and Table S2. The CRU_TS3.10 was 117 

used to define a common set of land grid points. The CRUTEM3 uncertainty model [Brohan et 118 

al., 2006] was used to construct the land averages and associated uncertainty estimates for 119 

CRUTEM3 and CRUTEM4 for 90°N to 60°S (Table S2) and 60°N to 60°S (Fig. S1, Table S3). 120 

NOAA provides the land-average and associated uncertainty for MLOSTv3.5.2 for the region 121 

60°N-60°S (Table S3). The fractional land/sea mask of MLOST was used for the time series 122 
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calculations for MLOST and JMATEMP as both are ocean and land blended analyses. 123 

Anomalies in a dataset were defined as the difference of each monthly grid point value from the 124 

1981 to 2010 monthly average for that dataset grid point.  Least squares linear trends are 125 

computed on the native grid of each dataset and then interpolated to the 1.5 degree latitude by 126 

1.5 degree longitude grid for computation of the comparison statistics between trend maps in 127 

Table S2 and Fig. 3. 128 

 129 

4. Description of Auxiliary Figures 130 

 131 

To compare the actual and expected mean square differences, an F-test is used. The required 132 

degrees of freedom are derived by accounting for the auto-correlation [Livezey and Chen, 1983] 133 

in the difference series of 20CR TL2m minus the station temperature dataset TL2m (Fig. S1, right 134 

panels).  The combined 95% uncertainty is formed by adding the error variances for each annual 135 

anomaly from the 20CR ensemble and the respective temperature dataset, taking the square root, 136 

and multiplying by +/- 1.96, assuming that the errors are Normally distributed.  While the overall 137 

correspondence is high (Table S3), low-frequency variability in the differences is apparent (Fig. 138 

S1). Such low-frequency variability, rather than a trend, indicates that these differences do not 139 

arise from an “urban warming” effect that remains in the land station datasets. 140 

 141 

Taking the mean of the square of the differences shown in the right panels of Fig. S1 forms the 142 

Mean Squared Difference in Table S3. Dividing the combined 95% uncertainty by 1.96 and 143 

taking the time-mean of the squared quantity forms the Expected Mean Squared Difference 144 

(Table S3). If the errors are random, the expected value of the variance of analysis minus 145 
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independent observation residuals in an optimal data assimilation system is simply the ensemble 146 

variance in observation space plus the observation error variance [Kalnay, 2003]. As is visible 147 

from Fig. S1, the differences depart from zero more frequently than expected, except for the 148 

MLOST dataset after 1952. Difference series do not show a clear trend that could be interpreted 149 

as a residual “urban warming” affecting the gridded temperature datasets (Fig. S1). It also 150 

appears that the differences and error estimates are consistent for the period before World War II 151 

(pre-1941) for the datasets shown in Fig. S1.  152 

 153 

The local TL2m trend patterns for the 1901-2010 period (Fig. S2) and for the 1952-2010 period 154 

(Fig. S3) were used in the calculation of the comparison statistics in Table S2 and Fig. 3 and are 155 

shown here for completeness. It is apparent that each dataset has some regional deviations not 156 

reflected in other datasets, such as differences over the Midwestern US and in the vicinity of 157 

Brazil and Argentina.  We note that there is a greater degree of spatial smoothness in the 158 

analyses of GISTEMP and MLOST compared to the other station temperature datasets. This 159 

arises from the relatively large smoothing box sizes in the GISTEMP analyses (1200 km and 250 160 

km) and from the use of empirical orthogonal teleconnections in the MLOST reconstruction.  161 

5. Auxiliary figures and captions162 
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163 
Fig. S1. Comparison between time series of annually-averaged near-global (60°N-60°S) TL2m 164 

anomalies from (left panels) 20CR and station temperature based estimates and (right panels) 165 

comparing their differences. [Left panels] Compared are anomaly series from 20CR (blue curve) 166 

and [top left] MLOSTv3.5.2  (red curve) and UDELv3.01 (black curve); [middle left] 167 

CRUTEM3 (red curve) and  GISTEMP1200 (black curve); and [bottom left] CRUTEM4 (red 168 

curve) and JMATEMP (black curve). 95% uncertainty ranges are shown for [top to bottom], 169 
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respectively, MLOSTv3.5.2, CRUTEM3, and CRUTEM4 (yellow fill) and 20CR (blue fill) and 170 

their overlap (green fill).  Right panels show the difference of each dataset from 20CR and the 171 

combined 95% uncertainty.  172 

 173 
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174 
Fig. S2. Spatial comparison of TL2m trends between 20CR and the station-temperature datasets 175 

listed in Table S2 over the 1901-2010 period.  The 20CR trend map is reproduced from Fig. 2b 176 

for ease of comparison. Trends are shown as °C change per 50 years. 177 
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178 
Fig. S3. As in Fig. S2, but local linear trends are computed over 1952-2010 periods. The 20CR 179 

map is reproduced from Fig. 2d for ease of comparison. 180 

 181 

 182 

 183 

 184 

 185 
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 186 
5. Auxiliary Tables and footnotes 187 
Table S1. Publicly available sources for each dataseta.  188 
 189 

20CR http://go.usa.gov/XTd 
http://rda.ucar.edu/datasets/ds131.1/  
http://portal.nersc.gov/project/20C_Reanalysis (+) 

CRUTEM3 http://www.metoffice.gov.uk/hadobs/crutem3, 
http://www.cru.uea.ac.uk/cru/data/temperature/ 
http://www.esrl.noaa.gov/psd/data/gridded/data.crutem3.html (+) 

CRUTEM4 http://www.metoffice.gov.uk/hadobs/crutem4 
http://www.cru.uea.ac.uk/cru/data/temperature/ 
http://www.esrl.noaa.gov/psd/data/gridded/data.crutem4.html (+) 

CRU_TS3.10 http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_fe
67d66a-5b02-11e0-88c9-00e081470265 (+) 

GISTEMP 250 km 
smoothing 
GISTEMP 1200 km 
smoothing 

http://data.giss.nasa.gov/gistemp/ 
http://www.esrl.noaa.gov/psd/data/gridded/data.gisstemp.html (+) 
 

JMATEMP http://ds.data.jma.go.jp/tcc/tcc/products/gwp/gwp.html (+) 

MLOSTv3.5.2.201211 http://www.ncdc.noaa.gov/ersst/merge.php 
ftp://ftp.ncdc.noaa.gov/pub/data/mlost/operational/products/ (+ series) 
http://www.esrl.noaa.gov/psd/data/gridded/data.mlost.html (+ fields) 

UDELv3.01 http://climate.geog.udel.edu/~climate/html_pages/download.html 
http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.ht
ml (+ ) 

AMIP20C http://portal.nersc.gov/project/20C_Reanalysis (+) 

 190 
a (+) shows the source used for the Figures and Tables.  191 
 192 
 193 

194 
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Table S2. Temporal and spatial comparison of global TL2m anomalies (90°N-60°S) from 20CR, 195 
station-temperature estimates and AMIP20C AGCM simulationa.  196 
 Temporal 

Correlation 
Annual  

Temporal Correlation 
Monthly High Pass 

Pattern 
correlation (area 
mean removed) 
 
 

Percentage of 
Land area 
where local 
trend is larger 
than 20CR 

Global 
average 
Trend 
(change in °C 
per 50 years) 

1901-2010 
 

     
CRUTEM3 0.91  0.76  0.69 (0.23) 60% 0.58 
CRUTEM4 0.90 0.77 0.74 (0.31) 62% 0.62 
CRU_TS3.10*  0.90  0.81  0.72 (0.33) 47% 0.42 
GISTEMP 250 km 
smoothing* 

0.88  0.78  0.68 (0.18) 61% 0.61 

JMATEMP*  0.89  0.74  0.67 (0.29) 63% 0.67 
MLOSTv3.5.2* 0.92  0.81  0.78 (0.41) 63% 0.55 

 UDELv3.01*  0.84 0.81 0.68 (0.26) 37% 0.34 
GISTEMP 1200 km 
smoothing 

0.88  0.81  0.69 (0.17) 56% 0.53 

AMIP20C 0.89  0.35  0.74 (0.32) 48% 0.45 
      
1952-2010b       
CRUTEM3 0.95  0.84  0.79 (0.38) 70% 0.94 
CRUTEM4 0.95 0.83 0.81 (0.42) 73% 1.0 
CRU_TS3.10* 0.96  0.86  0.77 (0.37) 69% 0.96 
GISTEMP 250 km 
smoothing* 

0.96  0.85  0.78 (0.32) 74% 1.0 

JMATEMP* 0.95  0.82  0.75 (0.36) 67% 0.98 
MLOSTv3.5.2* 0.96  0.86  0.80 (0.37) 74% 0.96 

 UDELv3.01* 0.96 0.87 0.70 (0.21) 62% 0.90 
GISTEMP 1200 km 
smoothing 

0.96  0.85  0.80 (0.41) 77% 1.0 

AMIP20C 0.89  0.36  0.73 (0.20) 53% 0.65 

 197 
aTemporal Correlation Annual shows the Pearson correlation coefficient between the 20CR and 198 

the indicated dataset. Temporal Correlation Monthly High Pass shows the Pearson correlation 199 

coefficient between the 20CR and the indicated dataset after a 7-year running mean has been 200 

removed from each series. Pattern Correlation shows the area-weighted pattern correlation 201 

between the 20CR and indicated trend fields. The pattern correlation with the global land area-202 

mean removed is shown in parentheses. The Percentage of land is the areal coverage of station-203 
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temperature or simulated local temperature trends that are larger than 20CR trends. Trend is the 204 

globally-averaged linear trend for each data set. The 20CR land-average trend is 0.45 °C/50 205 

years using 1901-2010 and 0.67 °C/50 years using 1952-2010.  206 

bNote that the year 1952 marks the first year after which the coefficients of the sampling and 207 

modeling uncertainty parameterization, “covariance inflation”,  remain constant [Auxiliary 208 

Material Section 2; Compo et al. 2011]. 209 

210 
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Table S3. Annually-averaged land temperature anomalies (60°N-60°S) from 20CR temporally 211 
compared with station-temperature estimates and AMIP20C.  212 

 213 

 214 
 Temporal 

Correlation 
Annual 
[all P values 
<0.004]  

Mean Square 
Difference with 
20CR 
 (MSD, °C2) 
 
 

Expected Mean 
Square Difference 
with 20CR (°C2) 
[P value for ratio 
with MSD] 

1901-2010 
 

   
CRUTEM3 0.91 0.0251 0.0103 [0.018] 
CRUTEM4  0.91 0.0282 0.0105 [0.010] 
CRU_TS3.10  0.91  0.0247  
GISTEMP 250 km 
smoothing  

0.89  0.0356  

JMATEMP 0.89  0.0316  
MLOST 0.91  0.0432 0.015 [0.010] 
UDEL 0.86 0.0301  
GISTEMP 1200 km 
smoothing 

0.89  0.0299  

AMIP20C 0.88  0.0262  
    
1952-2010a     
CRUTEM3 0.95  0.0157 0.0028 [0.002] 
CRUTEM4  0.95 0.0183 0.0030 [0.003] 
CRU_TS3.10 0.96  0.0228  
GISTEMP 250 km 
smoothing 

0.95  0.0257  

JMATEMP 0.94  0.0183  
MLOST 0.94 0.0277 0.0058 [0.027] 
UDEL 0.96 0.0169  
GISTEMP 1200 km 
smoothing 

0.95  0.0243  

AMIP20C 0.89  0.0190  

aNote that the year 1952 marks the first year after which the coefficients of the sampling and 215 
modeling uncertainty parameterization, “covariance inflation”,  remain constant [Auxiliary 216 
Material Section 2; Compo et al. 2011]. 217 
 218 
 219 
 220 
 221 
 222 
 223 
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